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The non-linear behavior of ice-induced vibration of an offshore platform with four legs
is investigated in this paper. The equations of motion of the system are derived by using
the Hamiltonian Principle. The force of moving ice based on the self-excitation and locking
is used to model the phenomenon of contact between the ice and the platform. By using
the approach of multiple scales, the primary resonance of the ice-induced vibration of the
platform is analyzed. The numerical results show that there exist several kinds of
combination resonances, including self-excited vibration and locking vibration. These
results coincide with those observed from an offshore platform in the North China Sea,
and hence enable one to gain insight into the ice-induced vibration of offshore platforms.

7 1998 Academic Press

1. INTRODUCTION

Offshore structures in ocean engineering are subject to a variety of loads such as ice, wave,
earthquake and wind. It is important to predict the dynamics of an offshore structure on
the basis of simplified mechanical models in the design phase. In practice, a complex
offshore platform is usually modelled as a beam with a number of lumped masses and
equivalent elastic components. Such a model has a great number of degrees of freedom
and costs a lot in the computation of design phase. If any non-linearity is taken into
account, even more efforts have to be made in the dynamic analysis. To reduce the
computational cost in this case, it is essential to establish a simple, but proper model.

Before analyzing the interaction between ice and a structure, one must have a clear idea
of the physical and mechanical properties of ice. Most of the early studies in this field were
based on the work of Croasdale [1] and Michel and Toussaint [2]. The current theory can
be used to estimate the maximal ice force in design. Although the computation of static
ice force needs further study, the main concern is the dynamic effect of ice on the structure,
namely, the relationship between the natural modes of the structure and the ice crack.
Korzhavin [3] was the first to undertake the complex research on the ice strength under
dynamic load. Peyton [4] found from the tests of pile-based platforms that the time history
of the ice force looked like a saw and pointed out that during the resonance of ice-induced
vibration of a structure its crash frequency was close to the resonant frequency of the
structure. Matlock et al. [5] used a group of cantilever beams to simulate the evolution
of ice crack. Blenkarn [6], according to Peyton’s non-linear relations between the ice
strength and loading velocity, established the theory of self-excited vibration. Toyama et
al. [7, 8] observed the ‘‘locking’’ vibration and developed the mechanical model applicable
to self-excited vibration of column-shaped structure. Haldar et al. [9] by taking into
account the interaction among ice, water, soil, and an offshore structure, analyzed the
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Figure 1. The model of platform.

tower frame using the finite element method and the stochastic approach, where the soil
was described by the so-called p–y curve. Shi [10] investigated the relationship between
the period of ice force and structural damping from the characteristics of ice force. Xu
and Wang [11] carried out a theoretical and experimental study on ice-structure
interaction.

The primary aim of this paper is to establish a simple, but useful mechanical model to
describe the offshore platform with four legs and an ice load, and to make an analysis of
the primary resonance, as well as other non-linear phenomena of the ice-induced vibration
of the platform.

2. MODEL OF ICE–PLATFORM SYSTEM

As shown in Figure 1, the offshore platform of concern consists of a rigid plate and four
elastic legs or piles. The plate at an arbitrary moment when the piles undergo deformation
is illustrated in Figure 2. The displacements of the i-th pile at the joint with the plate in
the x and y directions yield

Ui =U− riv F, Vi =V+ riu F i=1, 2, 3, 4, (1)

where riu and riv are the co-ordinates of x and y at the ith joint.

Figure 2. The position of the platform at an arbitrary instant, where CM is the center of mass, CR is the
geometric center.
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Figure 3. The deformation of piles w1 and w2 .

Figure 3 shows the geometric relations of piles w1 and w2 before and after deformation.
According to equation (1), one has the displacement relations of all piles

u1,4 = u+(r2v − r1v )F, v1 = v, u3 = u, v3,4 = v+(r4u − r1u )F, (2)

where u2 = u and v2 = v. The local deformation of pile w2 is illustrated in Figure 4. The
local co-ordinates before and after deformation are Mx̂ŷẑ and M*j
 ĥW
 , respectively. M and
M* are the center of mass of the cross-section.

If the axial displacement of a pile is neglected, the Hamiltonian quantity of the ith pile
reads

li = 1
2 mi (u̇2

i + v̇2
i )+ 1

2 ( jji v
2
ji + jhi v

2
hi + jWi v

2
Wi )− 1

2 (Dji r
2
ji +Dji r

2
ji +Dji r

2
ji ), (3)

where mi is the mass per unit length of the ith pile. jji , jhi , jWi and Dji , Dhi , DWi are the inertial
moments and the torsional stiffness coefficients around j
 , ĥ, W
 , respectively. vji , vhi , vWi

and rji , rhi , rWi are three angular velocity components and the components of curvature,
respectively [12]. Then, it is easy to write out the total Hamiltonian quantity of the system

l=g
L

s=0

s
4

i=1

li ds+
M
2

(U� 2
C,M +V� 2

C,M )+
Jc

2
F� 2. (4)

Figure 4. The local deformation of w2 pile.
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Figure 5. Crash frequency of ice locked to the first natural frequency.

It is assumed that the force of moving ice is in the y direction and acts at a point p on
pile w2 . From the Hamiltonian Principle, one has

dI=g
t2

t1
6dl+ s

4

i=1 $g
L

0

(Qui dui +Qvi dvi +Q8i d8i ) ds+ dWBi %+Qice dvp 7 dt=0, (5)

where M represents the mass of the platform, Jc the inertial moment around CR,
Qai (a= u, v, 8) the generalized force of the pile corresponding to virtual displacement da,
WBi the virtual work of the reactive forces at the boundary (s=0, L), vp the displacements
of point p, UC,M and VC,M the displacements of the platform center, respectively.

The force of moving ice yields [13]

Qice =B(a1 ė+ a2 ė2 + a3 ė3) sin vt, (6)

where ė=V�0 /4D, D is the diameter of the pile section where the ice force acts. V�0 is the
relative velocity of ice with respect to the platform. a1, a2, a3 are the optimal fitting
coefficients and B is the test constant of ice force. v is the crash frequency of ice and is
a non-linear function of ice velocity as shown in Figure 5. Usually the crash frequency
is locked to the natural frequency of translation vibration.

In the North China Sea, ice is the predominant load on an offshore platform. The
ice-induced vibration of the platform severely affects the work environment on the
platform and even threatens its safety. From a practical viewpoint, two assumptions shall
be used throughout this paper as follows: (a) Each pile is a cylindrical column with the
same size, and made of the same material. (b) The piles are so thin that the inertial
moments of all piles can be neglected.

Let

u=(ũ− r8)/2, v=(ṽ−R8)/2, (7)

where r= r2v − r1v , R= r4u − r1u . By substituting equation (7) into equation (5), after a
lengthy algebraic manipulation, one obtains a set of non-linear partial differential
equations in unknowns ũ, ṽ and 8. Then, using u, v and 8 to express ũ, ṽ and 8, one can
derive the following equations

(Md(s−L)/4+m)ü−Md(s−L) (r−2rev )/48̈+Cu u̇+Dh u00

= {−DW (8'+ u0v'/4)v0−(Dh /4) (u02 + v02 +R2
0 802)u'

−8'80u0(Dh r2/2+DW R2/4)}', (8)



-    435

(Md(s−L)/4+m)v̈−Md(s−L) (R+2reu )/48̈+Cv v̇+Dh v00

= {−DW 8'u0+[(r2DW −R2
0 Dh )/4]802v'+ [(DW −Dh )/4]u02v'

−Dh (v'v0/4+R28'80/2)v0}'+B0 sin vt, (9)

(J0 d(s−L)+mR2
0 )8̈+Cg 8̇+Dh R2

0 800=M[(r−2ev )ü+(R+2reu )v̈]d(s−L)/4

+{DW (48'+ u0v'− r2v'v080/2)− (Dh /2) [(r2u'u0+R2v'v0)80

+(R2
0 8'/2) (v02 +R2

0 802)]+ (8'u02/4) (R2DW −R2
0 Dh )}'+B0 (2rpx −R) sin vt,

(10)

where

B0 = (B/2) [a1 + a2 ė+ a2 ė2]ėd(s−L), reu = r2u − ex , rev = r2v − ey ,

rpx = rpu − r2u , J0 = Jc +MR2
0 /4+M(r2

eu + r2
ev +Rreu − rrev ),

Cg =4C8 +Cu r2 +Cv R2, R0 =zR2 + r2.

d(s) is the Dirac function. v̇p is the velocity of the platform at the ice acting position p and
rpu is the co-ordinate of point p in the x0 direction away from CR. The non-linear equations
(8), (9) and (10) describe the dynamics of the complex ice-platform system.

3. FREE VIBRATION

In equations (8), (9) and "10), u and v are coupled. So are the translation modes, whose
dimensionless expression reads

Fu,v =C1 (1−cos ps). (11)

In what follows, the torsional modes will be determined. One first defines a
set of dimensionless parameters s*= s/L, u*= u/L, v*= v/L, t*=vu t, where,
vu =za0 Dh /mu L3, mu = 1

4 F2
u (1)M+mL. Then, one has a dimensionless equation of

free vibration from equation (10)

[J0 d(s−L)/L+mR2
0 ]8̈+R2

0 Dh /L4800−4DW /L280=0. (12)

Assuming 8(s, t)=F8 (s) exp (ivg t) and substituting into equation (12), one obtains

F008 −[a0 Lv2
g + k2 d(s−L)]F8 − k2

3 F08 =0, (13)

where k2 = a0 J0 v2
g /mR2

0 Dh , k3 =z4DW L2/R2
0 Dh, and F8 (s) is the torsional mode shape

of the pile. By using the boundary conditions F8 (0)=F08 (0)=0, one obtains the
Laplace transform of equation (13). It can be proved that the inverse Laplace transform
yields

F8 (s)=
F'8 (0)
a2 + b2 0b2 − k2

3

b
sinh bs+

a2 + k2
3

a
sin as1+

F18 (0)
a2 + b2 01b sinh bs−

1
a

sin as1
+

k2 F8 (1)
a2 + b2 $1b sinh b(s−1)−

1
a

sin a(s−1)%u(s−1), (14)

where u(s−1) is the unit step function and a=za0 Lv2
g + k4

3 /4− k2
3 /2,

b=za0 Lv2
g + k4

3 /4+ k2
3 /2.
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According to the boundary conditions, one has F18 (1)=0 and F'8 (1)=0 if J0 =0.
Therefore, two homogeneous equations are obtained expressed in F'8 (0) and F18 (0). From
the condition of non-zero solution one has a characteristic equation, that is, the equation
of natural frequency

k2 (th b/b−tg a/a)+ (a2 + b2)=0. (15)

The torsional mode shapes can be evaluated from equation (14) with the solved natural
frequencies.

4. PERTURBATION ANALYSIS

A set of dimensionless variable and parameters is first defined:

vv =zDv /mv L3, C*u =Cu L/mu vu , C*v =Cv L/mv vv , C*g =Cg L/Jvu ,

V=v/vu ,

where

Dv = a0̄ Dh , mv =1/4F2
v (1)M+mL, J=F2

8 (1)/LJ0 +mR2
0 .

Then ut (s, t), vt (s, t) and 8t (s, t) is approximated by u*=Fu (s)ut (t), v*=Fv (s)vt (t) and
8*=F8 (s)8t (t) according to the Galerkin approach. Substituting them into equations
(8), (9) and (10), multiplying the results by the corresponding mode shapes and integrating
them from 0 to 1, one obtains the desired ordinary differential equations:

üt +Cu u̇t + ut = au1 8̈t + au2 8t vt + au3 u3
t + au4 ut v2

t + au5 ut 8
2
t ,

v̈t +Cv v̇t +v2
p vt = av1 8̈t + av2 8t ut + av3 v3

t + av4 vt u2
t + av5 vt 8

2
t

+ fv (1+ q2 U+ q3 U2)U sin Vt,

8̈t +Cg 8̇t +v2
n 8t = a80 üt + a81 v̈t + a82 ut vt + a83 83

t + a84 8tv2
t + a85 8t u2

t

+ f8 (1+ q2 U+ q3 U2)U sin Vt, (16)

where

U=1− qv v̇t − q8 8̇t , vp =vv /vu , vn = v̄g /vu , fv = a1 BL2lV0 Fv (1)/8DDu,

qv =vu LF2
v (1)/2V0, f8 =[a1 BL(2rpx −R)l�V0 F8 (1)]/8DDu,

q8 =[vu [2rpx F8 (1)−RFv (1)]F8 (1)]/2V0, l=mu /mv , l�=mu L/J,

q2 = a2 V0 /4a1 D, q3 = a3 V2
0 /16a1 D.

V0 is the velocity of ice. The Galerkin coefficients abi (b= u, v, 8, i=1, 2, . . . , 5) are given
in Appendix A.

To analyze the motion governed by the above coupled non-linear ordinary differential
equations, the approach of multiples scales will be used. One defines three time scales
T0 = t, T1 = et, T2 = e2t, and expands ut , vt and 8t in terms of e as

at (T0, T1, T2)= at1 (T0, T1, T2)+ eat2 (T0, T1, T2)+ e2at3 (T0, T1, T2)+ · · · . (17)

By substituting equation (17) into equation (16) and equating the same powers of e, one
has

D2
0 ut1 = ut1 =0, ut1 =Au cos [T0 +Bu (T1, T2)]=Au cos 8u ,

D2
0 vt1 +v2

p vt1 =0, vt1 =Av cos [vp T0 +Bv (T1, T2)]=Av cos 8v ,

D2
0 8t1 +v2

n 8t1 =0, 8t1 =Ag cos [vn T0 +Bg (T1, T2)]=Ag cos 8g , (18)
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D2
0 ut2 + ut2 =2[(D1 Au ) sin 8u +Au (D1 Bu ) cos 8u ]+ au2 Av Ag cos 8g cos 8v ,

D2
0 vt2 +v2

p vt2 =2vp [(D1 Av ) sin 8v +Av (D1 Bv ) cos 8v ]+ av2 Au Ag cos 8g cos 8u ,

D2
0 8t2 +v2

n 8t2 =2vn [(D1 Ag ) sin 8g +Ag (D1 Bg ) cos 8g ]+ a82 Au Av cos 8u cos 8v , (19)

where Di = 1/Ti (i=0, 1, 2) are the differential operators. The solutions of equation
(19) are:

D1 Aa =0 D1 Ba =0 (a= u, v, g),

ut2 = (au2 /2) [cos (8g +8v )/[1− (vn +vp )2]+ cos (8g −8v )/[1− (vn −vp )2]]Av Ag ,

vt2 = (av2 /2) [cos (8g +8u )/[v2
p −(1−vn )2]+ cos (8g −8u )/[v2

p −(1−vn )2]]Au Ag ,

8t2 = (a82 /2) [cos (8u +8v )/[v2
n −(1+vp )2]+ cos (8u −8v )/[v2

n −(1−vp )2]]Au Av . (20)

It is obvious that the system may undergo the combination resonances when
11 =vn 2vp =, vp 1 =vn 2 1= and vn 1 =vp 2 1=. The following analysis is confined to the
case when the excitation frequency V is near vp , one of the natural frequencies, and all
natural frequencies are closed to each other, i.e., vn =1. In this case, the platform exhibits
a non-linear primary resonance. Keeping the primary resonance term, one has

D2
0 ut3 + ut3 =−au1 Ag v2

n cos 8g +(Cu Au +2D2 Au ) sin 8u + k4 Au A2
v cos (8u −28v )

+ k5 Au A2
g cos (8u −28g)+ (2D2 Bu + k1 A2

v + k2 A2
g + k3 A2

u )Au cos 8u ,

D2
0 vt3 +v2

p vt3 =−av1 Ag v2
n cos 8g +vp (Cv Av +2D2 Av ) sin 8v + k9 Av A2

u cos (8v −28u )

+ k10 Av A2
g cos (8v−28g )+(2vp D2 Bv + k6 A2

u + k7 A2
g + k8 A2

v )Av cos 8v

+ fv fg sin VT0,

D2
0 8t3 +v2

n 8t3 =− a80 Au cos 8u − a81 Av v2
p cos 8v +vn (Cg Ag +2D2 Ag ) sin 8g

+ k14 Ag A2
u cos (8g −28u )+ k15 Ag A2

v cos (8g −28v )

+ (2vn D2 Bg + k11 A2
u + k12 A2

v + k13 A2
g )Ag cos 8g + f8 fg sin VT0,

(21)

where

fg =1+ q2 + q3 + [(q2 +3q3)/2] (4qv q8 Av Ag vp vn sin 8v sin 8g −(qv Av vp )2 cos 28v

−(q8 Ag vn )2 cos 8g ).

The coefficients k1, k2, . . . , k15 are listed in Appendix B.
Now the case of no mass eccentricity in the y direction is considered, i.e., Au =0.

This implies an observable fact that the actual displacement in the x direction is only
concerned with 8 and r. To study the steady state vibration, let V1vp + e2s2 and
vp 1vn (1+ e2D2), where s2 and D2 are detuning parameters. Then, one defines the
detuning parameters as

mu =D2 vn T2 + (Bu −Bg ), mv =D2 vn T2 + (Bv −Bg ), 8f =vp s2 T2 −Bv . (22)

By assuming that the solution of a steady state vibration is Aae and Bae (a= v, g). After
carrying out the lengthy algebraic manipulation, one obtains the results of sin uve , cos mve
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T 1

Galerkin’s coefficients

i 1 2 3 4 5

avi −0·0267134 −0.00174076 0·411246 0·408051 0·279233
a8i −1·17533 −0·0765605 −27·9026 1·52952 25·7851

and sin 8fe , cos 8fe . Noting that sin2 uve +cos2 mve =1 and sin2 8fe +cos2 8fe =1, one has
two non-linear algebraic equations that govern the steady state solution

(ac1 ac3 − ac2 ac4)2 + (ac1 ac5 + ac3 ac4)2 − (a2
c3 + ac2 ac5)2 =0,

(ae1 ae3 − ae2 ae4)2 + (ae1 ae5 + ae3 ae4)2 − (a2
e3 + ae2 ae5)2 =0, (23)

where the parameters ac1, ac2, . . . , ae4, ae5 are listed in Appendix C. The stability of the
steady state vibration may be ascertained by perturbing it to x̄(t)= x̄e + x̄s , where
x̄=[Av , Ag , mv , 8f ]. The stability of perturbed motion can be determined by applying the
Routh–Hurwitz criterion to the differential equation x̄

.
s =Ax̄s .

5. NUMERICAL RESULTS

To study the locking behavior of ice-induced vibration of a platform, a set of parameters
was taken as follows. The thickness of ice was 0·02 m and the elastic modulus was 3·0 MPa.
The length of the pile was 2 m, the outside diameter of the pile cross-section was 0·04 m,
the thickness of the pile cross-section was 0·0025 m, the Young’s modulus was 206 GPa,
the mass of platform was 72 kg, the eccentricity of the mass center in the x direction was
0·6 m, and a= b=0·75 m. The dimensionless damping coefficients were set as
Cv =0·61897176E-04 and Cg =0·57870809E-02. The Galerkin’s coefficients calculated
from these parameters are listed in Table 1.

In the computation of ice-induced vibration, the ice force was supposed to act at point
p on a pile in the y direction. The x and y co-ordinates of point p were rpu =−0·75 m and
rpv =−0·75 respectively. The computed relationship between the natural frequencies of
platform and the ice velocity is shown in Figure 6. One can see from Figure 6 that when
ice velocity V0 increases, the crash frequency of ice and the first natural frequency vp of
platform come to the state of ‘‘locking’’. In this case, the platform undergoes primary
resonance.

Figure 6. The locking response of platform.
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Figure 7. Translational response of ice-induced vibration. Key: · · · , stable; —w—, unstable.

Figures 7 and 8 show that if the ice velocity was within 60 cm/s, the translational and
rotational vibrations of the platform would undergo a jump from point A to B in the
figures. As reported by Shang et al. [14], the SP-62C deep water jacket platform began
to vibrate at the ice velocity of 10 cm/s, and then vibrated intensely. One can see from
Figures 7 and 8 that the ice velocity corresponding to the maximal response (point P) was
about 15 cm/s. Hence, the computational results coincide well with the experimental ones.
As the translational and torsional displacements are coupled, the platform would jump
twice, namely, from point P to A and from point A to B with the increase of ice velocity.
The numerical results accord with the observed phenomenon of the ice-induced vibration
of platform in the North China Sea. As shown in Figure 8, a jump occurred at point C
when ice velocity decreased.

Figure 9 shows the vibration amplitude and locking frequency versus the ice velocity.
It is obvious that when the vibration reached a peak with an increase in ice velocity, so
did the curvature of the locking frequency curve. It can be deduced that the platform
underwent a transition from self-excited vibration to frequency-locked vibration at a lower
ice velocity. At a higher ice velocity, the platform vibration did not undergo any jump.

Figure 8. Rotational response of ice-induced vibration. Key as for Figure 7.
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Figure 9. Vibration amplitude and crash frequency of ice versus ice velocity.

6. CONCLUSIONS

An offshore platform and its surrounding environment constitutes a complex non-linear
system. To gain insight into the complicated dynamics of the system, a simple, but useful
mechanical model is presented in this paper. The model shows that the non-linear behavior
of ice-induced vibration of a platform depends not only on the ice-force parameters, but
also on the parameters of the structure itself. The computation based on this model
indicated that the strong vibration of the platform would occur at a specific ice velocity,
which was very close to the observed dangerous velocity for SP-62C deep water jacket
platform in the North China Sea.
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APPENDIX A

a0 =g
1

0

Fu F2u ds, au1 =
(r−2rev )Fu (1)F8 (1)
(F2

u (1)+4mL/M)L
, au2 =−bW g

1

0

Fu (F0v F'8 ) ds,

au3 =−
bh

4 g
1

0

Fu (F'u F02
u )' ds, au4 =−1

4 $bW g
1

0

Fu (F0u F'v F0v )' ds+ bh g
1

0

Fu (F'u F02
u )' ds%,

au5 =−
1

2L2 $0bh r2 + bW

R2

2 1 g
1

0

Fu (F0u F'8 F08 )' ds+ bh

R2 + r2

2 g
1

0

Fu (F'u F02
8 )' ds%,

a0� =g
1

0

Fv F2v ds, av1 =
(R+2reu )Fv (1)F8 (1)
(F2

v (1)+4mL/M)L
, av2 = lbW g

1

0

Fv (F0u F'8 )' ds,

av3 =−
lbh

4 g
1

0

Fv (F'v F02
v )' ds, av4 =

l(bW − bh )
4 g

1

0

Fv (F02
u F'v )' ds,

av5 =
l

2L2 $bW r2 − (R2 + r2)bh

2 g
1

0

Fv (F'v F02
8 )' ds− bh R2 g

1

0

Fv (F0v F'8 F08 )' ds%,

a80 =
M(r− rev )Fu (1)F8 (1)

2J
, a81 =

M(R+ reu )Fv (1)F8 (1)
2J

a82 = l�bW g
1

0

F8 (F0u F'v )' ds, a83 =
(R2 + r2)2l�bh

4L4 g
1

0

F8 (F'8 F02
8 )' ds,

a84 =−
l�

4L2 $(2R2bh + r2bW ) g
1

0

F8 (F08 F'v F0v )' ds+(R2 + r2)bh g
1

0

F8 (F'8 F02
v )' ds%,

a85 =
l�

4L2 [(R2bW −(R2 + r2)bh ) g
1

0

F8 (F'8 F02
u )' ds−2r2bh g

1

0

F8 (F08 F'u F0u )' ds%,

where

bh =1/a0. bW =DW /a0 Dh .
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APPENDIX B

k1 = au4 /2+ au2 a82 /6, k2 = au5 /2+ au2 av2 /6, k3 = 3
4 au3, k4 = au4 /4+ au2 a82 /4,

k5 = au5 /4+ au2 av2 /4, k6 = av4 /2+ av2 a82 /6, k7 = av5 /2+ au2 av2 /6,

k8 = 3
4 av3, k9 = av4 /4+ av2 a82 /4, k10 = av5 /4+ au2 /av2 /4,

k11 = a85 /2+ av2 a82 /6, k12 = a84 /2+ au2 a82 /6, k13 = 3
4 a83,

k14 = a85 /4+ av2 a82 /4, k15 = a84 /4+ au2 a82 /4.

APPENDIX C

ac1 = (agv − bv bs )k15 Ave +(bg − av bs )bs k10 Age ,

ac2 = (agv − bv bs )bs k10 Age +(bg − av bs )k15 Ave +(k2
15 A2

ve − b2
s k2

10 A2
ge )Ave Age ,

ac3 = (Cg k15 Ave +Cv b2
s k10)Ave Age , ac4 =−(Cg k10 A2

ge +Cv k15 A2
ve )bs ,

ac5 = (agv − bv bs )bs k10 Age +(bg − av bs )k15 Ave −(k2
15 A2

ve − b2
s k2

10 A2
ge )Ave Age ,

ae1 = av cos mve + bv + k10 Ave A2
ge cos 2mve , ae2 =−( fv5 sin 2mve + fv6 sin mve ),

ae3 =−fv3 − fv4 − fv5 cos 2mve + fv6 cos mve ,

ae4 = av sin mve +Cv2 Ave + k10 Ave A2
ge sin 2mve ,

ae5 = fv3 + fv4 + fv5 cos 2mve +3fv6 cos mve ,

where

bs = f8 /fv , av =−av1 Age , bv =(2vp s2 + k7 A2
ge + k8 A2

ve )Ave , agv =−a81 Ave ,

bg =[2(D2 vn + s2 vp )+ k11 A2
ve + k13 A2

ge ]Age ,

f1 =1+ q2 + q3 + (q2
v A2

v + q2
8 A2

g ) (q2 +3q3)/2,

fv3 = f1 fv , fv4 = q2
v A2

v (q2 +3q3)fv /4, fv5 = (q8 Ag /qv Av )2fv4,

fv6 =2(q8 Ag /qv Av )fv4,

fv6 =2(q8 Ag /qv Av )fv4, mve =sin−1 ([ac1 ac3 − ac2 ac4]/[a2
c3 + ac2 ac5]).


